KNIMI数据挖掘建模与分析系列_003_利用KNIMI做客户细分

利用KNIMI做客户细分

老帅

20150801

http://blog.csdn.net/shuaihj

一、测试数据

            

需要测试数据,请留下邮箱

 二、计算消费金额和消费次数

1.读入(销售数据.csv)

读取列标题

2. 时间格式转换

按指定时间格式识别“订单创建日期”列

3.对金额分组加和

依据客户编号对”销售金额”加和

 

4.字段重命名更可读

统计结果


5. 对订单分组计数

依据客户编号对”销售订单编号”进行去重加和


6.字段重命名更可读


统计结果

7.连接查询客户的消费金额和消费次数

设置连接方式和关键列

8.统计结果

9.数据流

三、计算多少天没消费了

1.最近一次消费时间

依据客户编号对订单创建日期取最大值

2.多少天没消费了

计算客户最近一次消费,距离“2014年1月31日”有“多少天没消费了”

3.过滤无用字段


4.统计结果

5.数据流

四、根据销售数据对客户进行层次聚类计算

1.连接查询客户的消费信息

设置连接方式和关键列

查询结果

2.聚类计算前标准化

设置需要标准化的列和标准化算法

标准化结果

3.计算层次聚类

指定“距离函数”、“连接类型”以及参与聚类计算的列

分层聚类结果

4.去掉噪声数据(全局)

放大层次聚类图

选中噪声点并设置为噪声

在全局过滤噪声数据

查看被过滤掉的数据

5.数据流


四、根据销售数据对客户进行k-Means聚类计算

1.计算k-Means聚类

指定聚类参数及参与聚类计算的列

查看聚类结果

2.根据聚类结果指派数据

(也就是根据训练模型测试真实数据)

查看聚类结果

3.决策树训练

设置决策树参数

查看训练结果

4.数据流

©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页